Course Overview:

The mark of excellence for a professional certification program is the value and recognition it bestows on the individual who achieves it.  The technical skills & practices the CISA promotes and evaluates are the building blocks of success in the field. Possessing the CISA designation demonstrates proficiency and is the basis for measurement in the profession.  With a growing demand for professionals possessing IS audit, control and security skills, CISA has become a preferred certification program by individuals and organizations around the world.  CISA certification signifies commitment to serving an organization and the IS audit, control and security industry with distinction.  This course will help the student prepare to obtain this credential.

Attendees to TN-822: Certified Information Systmes Auditor (CISA) Seminar will receive TechNow approved course materials and expert instruction.

Document Flow Chart iconsm

Dates/Locations:

Date/Time Event
04/13/2026 - 04/17/2026
08:00 -16:00
TN-822: Certified Information Systems Auditor (CISA) Seminar
TechNow, Inc, San Antonio TX
05/04/2026 - 05/08/2026
08:00 -16:00
TN-825: Certified Information Security Manager (CISM) Seminar
TechNow, Inc, San Antonio TX
07/27/2026 - 07/31/2026
08:00 -16:00
TN-822: Certified Information Systems Auditor (CISA) Seminar
TechNow, Inc, San Antonio TX
12/07/2026 - 12/11/2026
08:00 -16:00
TN-822: Certified Information Systems Auditor (CISA) Seminar
TechNow, Inc, San Antonio TX

Duration: 5 Days

Course Objectives:

  • Information Systems Auditing Process (18%)
    • Providing industry-standard audit services to assist organizations in protecting and controlling information systems, Domain-1 affirms your credibility to offer conclusions on the state of an organization’s IS/IT security, risk and control solutions.
  • Governance & Management of IT (18%)
    • This domain confirms to stakeholders your abilities to identify critical issues and recommend enterprise-specific practices to support and safeguard the governance of information and related technologies.
  • Information Systems Acquisition, Development & Implementation  (12%)
    • Domains 3 and 4 offer proof not only of your competency in IT controls, but also your understanding of how IT relates to business.
  • Information Systems Operation & Business Resilience (26%)
    • Domains 3 and 4 offer proof not only of your competency in IT controls, but also your understanding of how IT relates to business.s.
  • Protection of Information Assets  (26%)
    • Cybersecurity now touches virtually every information systems role, and understanding its principles, best practices and pitfalls is a major focus within Domain 5.

Prerequisites:

A minimum of five years of professional information systems auditing, control & security work experienced is required.  Experience must have been gained within the 10-year period preceding the application date for certification, or within five years from the date of initially passing the examination.

Comments

Latest comments from students


User: fsarisen

Instructor comments: Thank you Tim for all the great information! I am confident that I'll do well on the ICND exam.


User: storoy30

Instructor comments: The instructor, Tim Burkard, was very knowledgeable on the course material and skilled at explain more complex ideas.


Liked the class?  Then let everyone Know!

 

Course Overview:

TN-575: Open Source Network Security Monitoring teaches students how to deploy, build, and run an NSM operation using open source software and vendor-neutral tools. No network is bullet proof and when attackers access your network, this course will show you how to build a security net to detect, contain, and control the attacker. Sensitive data can be monitored and deep packet and deep attachment analysis can be achieved. As organizations stand up a Security Operations Center (SOC) the enterprise NSM is the key ingredient to that SOC. This course not only teaches how to implement an NSM technologically, but how to effectively monitor an enterprise operationally. You will learn how to architect an NSM solution: where to deploy your NSM platforms and how to size them, stand-alone or distributed, and integration into packet analysis, interpret evidence, and integrate threat intelligence from external sources to identify sophisticated attackers. A properly implemented NSM is integral to incident response and provides the responders timely information to react to the incident. TN-575: Open Source Network Security Monitoring is a lab intensive environment with a cyber range that gives each student in-depth knowledge and practical experience monitoring live systems to include: Cisco, Windows, Linux, IoT, and Firewalls.

Attendees to TN-575: Open Source Network Security Monitoring class will receive TechNow approved course materials and expert instruction.

This Course is taught utilizing Security Onion or RockNSM as specified by the customer.

Dates/Locations:

No Events

Duration: 5 Days

Course Objective:

The focus of this course is to present a suite of Open Source security products integrated into a highly functional and scalable Network Security Monitoring solution.

Prerequisites:

Students should have a basic understanding of networks, TCP/IP and standard protocols such as DNS, HTTP, etc. Some Linux knowledge/experience is recommended, but not required

Course Outline:

  • Network Security Monitoring (NSM) Methodology
  • High Bandwidth Packet Capture Challenges
  • Installation of Security Onion
    • Use Cases (analysis, lab, stand-alone, distributed)
    • Resource Requirements
  • Configuration
    • Setup Phase I – Network Configuration
    • Setup Phase 2 – Service Configuration
    • Evaluation Mode vs. Configuration Mode
    • Verifying Services
  • Security Onion Architecture
    • Configuration Files and Folders
    • Network Interfaces
    • Docker Environment
    • Security Onion Containers
  • Overview of Security Onion Analyst Tools
    • Kibana
    • CapME
    • CyberChef
    • Squert
    • Sguil
    • NetworkMiner
  • Quick Review of Wireshark and Packet Analysis
    • Display and Capture Filters
    • Analyze and Statistics Menu Options
    • Analysis for Signatures
  • Analyzing Alerts
    • Replaying Traffic
    • 3 Primary Interfaces:
      • Squert
      • Sguil
      • Kibana
    • Pivoting Between Interfaces
    • Pivoting to Full Packet Capture
  • Snort and Surricata
    • Rule Syntax and Construction
    • Implementing Custom Rules
    • Implementing Whitelists and Blacklists
  • Hunting
    • Using Kibana to Slice and Dice Logs
    • Hunting Workflow with Kibana
  • Bro
    • Introduction and Overview
      • Architecture, Commands
    • Understanding and Examining Bro Logs
      • Using AWK, sort, uniq, and bro-cut
    • Working with traces/PCAPs
    • Bro Scripts Overview
      • Loading and Using Scripts
    • Bro Frameworks Overview
      • Bro File Analysis Framework FAF
    • Using Bro scripts to carve out more than files
  • RockNSM ( * If Applicable)
    •  Kafka
      • Installation and Configuration
      • Kafka Messaging
      • Brokers
      • Integration with Bro and FSF
    • File Scanning Framework FSF
      • Custom YARA Signatures
      • JSON Trees
      • Sub-Object Recursion
      • Bro and Suricata Integration
  • Elastic Stack
    • Adding new data sources in Logstash
    • Enriching data with Logstash
    • Automating with Elastalert
    • Building new Kibana dashboards
  • Production Deployment
    • Advanced Setup
    • Master vs Sensor
    • Node Types – Master, Forward, Heavy, Storage
    • Command Line Setup with sosetup.conf
    • Architectural Recommendations
    • Sensor Placement
    • Hardening
    • Administration
    • Maintenance
  • Tuning
    • Using PulledPork to Disable Rules
    • BPF’s to Filter Traffic
    • Spinning up Additional Snort / Suricata / Bro Workers to Handle Higher Traffic Loads

Comments

Latest comments from students


 

Liked the class?  Then let everyone know!

Course Overview:

This course, TN-385: TCP/IP Analysis & Implementation, provides students with a comprehensive technical introduction to TCP/IP & the interworkings of TCP/IP application to UNIX, Linux and Windows in a network environment.  This course begins by providing a comprehensive protocol stack analysis.  It continues with extensive hands-on exercises needed to configure TCP/IP on UNIX and Windows based networks.

Attendees to TN-385: TCP/IP Analysis & Implementation will receive TechNow approved course materials and expert instruction.

Dates/Locations:

No Events

Duration: 5 Days

Course Objectives:

  • A thorough comprehension of each level of the protocol stack
  • Configuring UNIX & Windows to access internetworks
  • Configuring & setting up a Cisco router
  • Properly implementing subnets to avoid ongoing maintenance headaches
  • Routing & routing protocols, RIP, OSPF, and IGRP
  • How to troubleshoot a wide range of routing problems
  • All major TCP/IP application services including: FTP, TELNET, SNMP, NFS, DNS, DHCP, & WINS
  • How to avoid common internetworking problems
  • How to troubleshoot TCP/IP networks using protocol analysis techniques – snoop on Sun Workstation & Network Monitor on Windows.
  • How to design, build, configure, & manage TCP/IP internetworks
  • Applying a structured methodology for troubleshooting TCP/IP internetworks
  • ACL's on Cisco routers

Prerequisites:

  • Students should have good end-user skills in TCP/IP (FTP, TELNET, RLOGON,  & MAIL).

Comments

Latest comments from students


Liked the class?  Then let everyone know!

CCFE Core Competencies

  • Procedures and Legal Issues
  • Computer Fundamentals
  • Partitioning Schemes
  • Data Recovery
  • Windows File Systems
  • Windows Artifacts
  • Report writing (Presentation of Finding)
  • Procedures and Legal issues
  1. Knowledge of search and subjection and rules for evidence as applicable to computer forensics.
  2. Ability to explain the on-scene action taken for evidence preservation.
  3. Ability to maintain and document an environment consolidating the computer forensics.
  • Computer Fundamentals
  1. Understand BIOS
  2. Computer hardware
  3. Understanding of numbering system (Binary, hexadecimal, bits, bytes).
  4. Knowledge of sectors, clusters, files.
  5. Understanding of logical and physical files.
  6. Understanding of logical and physical drives.
  • Partitioning schemes
  1. Identification of current partitioning schemes.
  2. Understanding of primary and extended partition.
  3. Knowledge of partitioning schemes and structures and system used by it.
  4. Knowledge of GUID and its application.
  • Windows file system
  1. Understanding of concepts of files.
  2. Understanding of FAT tables, root directory, subdirectory along with how they store data.
  3. Identification, examination, analyzation of NTFS master file table.
  4. Understanding of $MFT structure and how they store data.
  5. Understanding of Standard information, Filename, and data attributes.
  • Data Recovery
  1. Ability to validate forensic hardware, software, examination procedures.
  2. Email headers understanding.
  3. Ability to generate and validate forensically sterile media.
  4. Ability to generate and validate a forensic image of media.
  5. Understand hashing and hash sets.
  6. Understand file headers.
  7. Ability to extract file metadata from common file types.
  8. Understanding of file fragmentation.
  9. Ability to extract component files from compound files.
  10. Knowledge of encrypted files and strategies for recovery.
  11. Knowledge of Internet browser artifacts.
  12. Knowledge of search strategies for examining electronic
  • Windows Artifacts
  1. Understanding the purpose and structure of component files that create the windows registry.
  2. Identify and capability to extract the relevant data from the dead registry.
  3. Understand the importance of restore points and volume shadow copy services.
  4. Knowledge of the locations of common Windows artifacts.
  5. Ability to analyze recycle bin.
  6. Ability to analyze link files.
  7. Analyzing of logs
  8. Extract and view windows logs
  9. Ability to locate, mount and examine VHD files.
  10. Understand the Windows swap and hibernation files.
  • Report Writing (Presentation of findings)
  1. Ability to conclude things strongly based on examination observations.
  2. Able to report findings using industry standard technically accurate terminologies.
  3. Ability to explain the complex things in simple and easy terms so that non-technical people can understand clearly.
  4. Be able to consider legal boundaries when undertaking a forensic examination