Course Overview:

This course is instructed with an instructor in the classroom with provided lab equipment and Cyber Range.

Students enrolled in the Certified Network Defender course, will gain a detailed understanding and hands on ability to function in real life situations involving network defense. They will gain the technical depth required to actively design a secure network in your organization. This program will be akin to learning math instead of just using a calculator.

This course gives you the fundamental understanding of the true construct of data transfer, network technologies, software technologies so that you understand how networks operate, understand what software is automating and how to analyze the subject material.

You will learn how to protect, detect and respond to, and predict threats on the network.  This builds upon the typical knowledge and skills of Network Administrators in network components, traffic, performance and utilization, network topology, system locations, and security policies.

You will learn network defense fundamentals, the application of network security controls, protocols, perimeter appliances, secure IDS, VPN and firewall configuration. You will then learn the intricacies of network traffic signature, analysis and vulnerability scanning which will help you when you design greater network security policies and successful incident response plans. These skills will help you foster resiliency and continuity of operations during attacks.

This course supports a certification that is DoD approved 8570 Baseline Certificate and meets DoD 8140/8570 training requirements.

 

What’s Included:

  • EC-Council official E-Courseware
  • EC-Council iLabs access included for 6 months
  • EC-Council official Certificate of Attendance
  • CND Exam Voucher with 1 FREE RETAKE VOUCHER

 

Security Course Flow
Document Flow Chart iconsm

Dates/Locations:

No Events

Duration: 5 Days

Course Content:

  • Module 01. Network and Defense Strategies
  • Module 02. Administrative Network Security
  • Module 03. Technical Network Security
  • Module 04. Network Perimeter Security
  • Module 05. Endpoint Security-Windows Systems
  • Module 06. Endpoint Security- Linux Systems
  • Module 07. Endpoint Security- Mobile Devices
  • Module 08. Endpoint Security- IoT Devices
  • Module 09. Administrative Application Security
  • Module 10. Data Security
  • Module 11. Enterprise Virtual Network Security
  • Module 12. Enterprise Cloud Network Security
  • Module 13. Enterprise Wireless Network Security
  • Module 14. Network Traffic Monitoring and Analysis
  • Module 15. Network Logs Monitoring and Analysis
  • Module 16. Incident Response and Forensic Investigation
  • Module 17. Business Continuity and Disaster Recovery
  • Module 18. Risk Anticipation with Risk Management
  • Module 19. Threat Assessment with Attack Surface Analysis
  • Module 20. Threat Prediction with Cyber Threat Intelligence

 

Prerequisites:

  • Basic network and host operations knowledge
  • Experience commensurate with one to five years of network, host, or application administration
  • TN-325:Security+   or equivalent

 

Courses to follow:

 

Target Audience:

Network Administrators, Network Security Administrators, Network Security Engineer, Network Defense Technicians, Network Analyst, Security Analyst, Security Operator, and anyone involved in network operations

 

About us:

TechNow has taught security courses for almost 30 years, before most certifications existed and has successfully moved students through certification programs associated with IAPP, SANS, EC-Council and ISC2. Our instructor maintains over a dozen security certifications and has been the director of a company with internationals sales in security training, consulting, and compliance.

Tech Now, Inc. is an accredited Training Center with Ec-Council.

Comments

Latest comments from students


Liked the class?  Then let everyone know!

 

Course Overview:

TN-575: Open Source Network Security Monitoring teaches students how to deploy, build, and run an NSM operation using open source software and vendor-neutral tools. No network is bullet proof and when attackers access your network, this course will show you how to build a security net to detect, contain, and control the attacker. Sensitive data can be monitored and deep packet and deep attachment analysis can be achieved. As organizations stand up a Security Operations Center (SOC) the enterprise NSM is the key ingredient to that SOC. This course not only teaches how to implement an NSM technologically, but how to effectively monitor an enterprise operationally. You will learn how to architect an NSM solution: where to deploy your NSM platforms and how to size them, stand-alone or distributed, and integration into packet analysis, interpret evidence, and integrate threat intelligence from external sources to identify sophisticated attackers. A properly implemented NSM is integral to incident response and provides the responders timely information to react to the incident. TN-575: Open Source Network Security Monitoring is a lab intensive environment with a cyber range that gives each student in-depth knowledge and practical experience monitoring live systems to include: Cisco, Windows, Linux, IoT, and Firewalls.

Attendees to TN-575: Open Source Network Security Monitoring class will receive TechNow approved course materials and expert instruction.

This Course is taught utilizing Security Onion or RockNSM as specified by the customer.

Dates/Locations:

No Events

Duration: 5 Days

Course Objective:

The focus of this course is to present a suite of Open Source security products integrated into a highly functional and scalable Network Security Monitoring solution.

Prerequisites:

Students should have a basic understanding of networks, TCP/IP and standard protocols such as DNS, HTTP, etc. Some Linux knowledge/experience is recommended, but not required

Course Outline:

  • Network Security Monitoring (NSM) Methodology
  • High Bandwidth Packet Capture Challenges
  • Installation of Security Onion
    • Use Cases (analysis, lab, stand-alone, distributed)
    • Resource Requirements
  • Configuration
    • Setup Phase I – Network Configuration
    • Setup Phase 2 – Service Configuration
    • Evaluation Mode vs. Configuration Mode
    • Verifying Services
  • Security Onion Architecture
    • Configuration Files and Folders
    • Network Interfaces
    • Docker Environment
    • Security Onion Containers
  • Overview of Security Onion Analyst Tools
    • Kibana
    • CapME
    • CyberChef
    • Squert
    • Sguil
    • NetworkMiner
  • Quick Review of Wireshark and Packet Analysis
    • Display and Capture Filters
    • Analyze and Statistics Menu Options
    • Analysis for Signatures
  • Analyzing Alerts
    • Replaying Traffic
    • 3 Primary Interfaces:
      • Squert
      • Sguil
      • Kibana
    • Pivoting Between Interfaces
    • Pivoting to Full Packet Capture
  • Snort and Surricata
    • Rule Syntax and Construction
    • Implementing Custom Rules
    • Implementing Whitelists and Blacklists
  • Hunting
    • Using Kibana to Slice and Dice Logs
    • Hunting Workflow with Kibana
  • Bro
    • Introduction and Overview
      • Architecture, Commands
    • Understanding and Examining Bro Logs
      • Using AWK, sort, uniq, and bro-cut
    • Working with traces/PCAPs
    • Bro Scripts Overview
      • Loading and Using Scripts
    • Bro Frameworks Overview
      • Bro File Analysis Framework FAF
    • Using Bro scripts to carve out more than files
  • RockNSM ( * If Applicable)
    •  Kafka
      • Installation and Configuration
      • Kafka Messaging
      • Brokers
      • Integration with Bro and FSF
    • File Scanning Framework FSF
      • Custom YARA Signatures
      • JSON Trees
      • Sub-Object Recursion
      • Bro and Suricata Integration
  • Elastic Stack
    • Adding new data sources in Logstash
    • Enriching data with Logstash
    • Automating with Elastalert
    • Building new Kibana dashboards
  • Production Deployment
    • Advanced Setup
    • Master vs Sensor
    • Node Types – Master, Forward, Heavy, Storage
    • Command Line Setup with sosetup.conf
    • Architectural Recommendations
    • Sensor Placement
    • Hardening
    • Administration
    • Maintenance
  • Tuning
    • Using PulledPork to Disable Rules
    • BPF’s to Filter Traffic
    • Spinning up Additional Snort / Suricata / Bro Workers to Handle Higher Traffic Loads

Comments

Latest comments from students


 

Liked the class?  Then let everyone know!

Course Overview:

This course begins by introducing you to fundamental cloud computing and AWS security concepts including AWS access control and management, governance, logging, and encryption methods. It also covers security-related compliance protocols and risk management strategies, as well as procedures related to auditing your AWS security infrastructure.

The course continues to teach students how to efficiently use AWS security services to stay secure and compliant in the AWS cloud. The course focuses on the AWS-recommended security best practices that you can implement to enhance the security of your data and systems in the cloud. The course highlights the security features of AWS key services including compute, storage, networking, and database services. This course also refers to the common security control objectives and regulatory compliance standards and examines use cases for running regulated workloads on AWS across different verticals, globally. You will also learn how to leverage AWS services and tools for automation and continuous monitoring—taking your security operations to the next level.

Attendees to CL-425: AWS Security Operations and Architecture will receive TechNow approved course materials and expert instruction.

Duration: 5 Days

Audience:
• Security engineers
• Security architects
• Security analysts
• Security auditors
• Individuals who are responsible for governing, auditing, and testing an organization’s IT infrastructure, and ensuring conformity of the infrastructure to security, risk, and compliance guidelines

DoD 8140: Not Mandated

Course Prerequisites:

We recommend that attendees of this course have the following prerequisites:
This course assumes you have the equivalent experience or have taken the AWS operational courses that are in the TechNow AWS track.
CL-415: AWS Security Operations

The above courses encapsulate prerequisite knowledge:
• Experience with governance, risk, and compliance regulations and control objectives
• Working knowledge of IT security practices
• Working knowledge of IT infrastructure concepts
• Familiarity with cloud computing concepts

Course Objectives:

This course teaches you how to:
• Identify the security and compliance benefits of using the AWS cloud.
• Discuss the AWS Shared Responsibility Model.
• Describe the access control and access management features of AWS.
• Use AWS services for security logging and monitoring.
• Describe data encryption methods to secure sensitive data.
• Describe AWS services used to protect network security.
• Describe the basic steps to ensure strong governance of your AWS resources.
• Identify AWS services used to maintain governance of control environments.
• Use the AWS audit features.
• Explain how to audit an AWS environment.
• Explain the AWS compliance and assurance programs.
• Describe how AWS audits and attestations validate that security controls are implemented and operating effectively.
• Assimilate and leverage the AWS shared security responsibility model.
• Mange user identity and access management in the AWS cloud.
• Use AWS security services such as AWS Identity and Access Management, Amazon Virtual Private Cloud, AWS Config, AWS CloudTrail, AWS Key Management Service, AWS CloudHSM, and AWS Trusted Advisor.
• Implement better security controls for your resources in the AWS cloud.
• Manage and audit your AWS resources from a security perspective.
• Monitor and log access and usage of AWS compute, storage, networking, and database services.
• Analyze events by capturing, monitoring, processing, and analyzing logs.
• Identify AWS services and tools to help automate, monitor, and manage security operations on AWS.
• Perform security incident management in the AWS cloud.
• Perform security assessments to ensure that common vulnerabilities are patched and security best practices are applied. The assessment outline deals both with AWS specifics and also lays down the workflow of NIST, FedRAMP, and Cloud Security Alliance STAR compliance for a deployed AWS solution.

Dates/Locations: No Events

Course Outline:

Day 1
• Introduction to Cloud Computing and AWS Security
• Access Control and Management
• AWS Security: Governance, Logging, and Encryption
• Compliance and Risk Management

Day 2
• Introduction to Cloud Security Course Objectives
• Security of the AWS Cloud: Entry Points, Web Application, Communications, and Incident Response.
• Cloud Aware Governance and Compliance and related control frameworks.
• Identity and Access Management
Day 3
• Securing AWS Infrastructure Services
• Securing AWS Container Services
• Securing AWS Abstracted Services
• Using AWS Security Services
Day 4
• Data Protection in the AWS Cloud
• Managing security in a hybrid environment
• Deep dive into AWS monitoring and log analysis
• Protecting against outside threats to AWS VPC
Day 5
• How to carry out a Pentest on an AWS solution
• Security Incident Management and Automating security and incident response
• Threat detection and monitoring sensitive data
• Lets Do it! Building Compliant Workloads on AWS—Case Study

 

Course Overview:

This course delivers the technical knowledge, insight, and hands-on training to receive in-depth knowledge on Wireshark® and TCP/IP communications analysis. You will learn to use Wireshark to identify the most common causes of performance problems in TCP/IP communications. You will learn about the underlying theory of TCP/IP and the most used application protocols, so that you can intelligently examine network traffic for performance issues or possible Indicators of Compromise (IoC).

Duration: 5 Days

Audience:

Anyone interested in learning to troubleshoot and optimize TCP/IP networks and analyze network traffic with Wireshark, especially network engineers, information technology specialists, and security analysts.

Course Prerequisites:

We recommend that attendees of this course have the following prerequisite:
• Network+

Dates/Locations: No Events

Course Outline:

DAY ONE

Course Set Up and Analyzer Testing

Network Analysis Overview
Wireshark Functionality Overview
Capturing Wired and Wireless Traffic
Define Global and Personal Preferences for Faster Analysis
Defined Time Values and Interpret Summaries
Interpret Basic Trace File Statistics to Identify Trends
Create and Apply Display Filters for Efficient Analysis

DAY TWO

Follow Streams and Reassemble Data
Use Wireshark’s Expert System to Identify Anomalies
TCP/IP Analysis Overview
Analyze Common TCP/IP Traffic Patterns

DAY THREE

Graph I/O Rates and TCP Trends
802.11 (WLAN) Analysis Fundamentals
Voice over IP (VoIP) Analysis Fundamentals
Network Forensics Fundamentals

DAY FOUR

Detect Scanning and Discovery Processes
Analyze Suspect Traffic

DAY FIVE

Use Command‐Line Tools

Next/Related Courses:

 

 

Course Overview:

The Implementing and Operating Cisco Enterprise Network Core Technologies (ENCOR) course gives you the knowledge and skills needed to configure, troubleshoot, and manage enterprise wired and wireless networks. You’ll also learn to implement security principles, implement automation and programmability within an enterprise network, and how to overlay network design by using SD-Access and SD-WAN solutions.

Attendees to N-415: Implementing and Operating Cisco Enterprise Network Core Technologies (ENCOR) will receive TechNow approved course materials, expert instruction, and prepare you to take the 350-401 Implementing Cisco® Enterprise Network Core Technologies (ENCOR) exam.

Document Flow Chart iconsm

Dates/Locations:

No Events

Duration: 5 Days

Course Objectives:

  • Illustrate the hierarchical network design model and architecture using the access, distribution, and core layers
  • Compare and contrast the various hardware and software switching mechanisms and operation, while defining the Ternary Content Addressable Memory (TCAM) and Content Addressable Memory (CAM), along with process switching, fast switching, and Cisco Express Forwarding concepts
  • Troubleshoot Layer 2 connectivity using VLANs and trunking
  • Implementation of redundant switched networks using Spanning Tree Protocol
  • Troubleshooting link aggregation using Etherchannel
  • Describe the features, metrics, and path selection concepts of Enhanced Interior Gateway Routing Protocol (EIGRP)
  • Implementation and optimization of Open Shortest Path First (OSPF)v2 and OSPFv3, including adjacencies, packet types, and areas, summarization, and route filtering for IPv4 and IPv6
  • Implementing External Border Gateway Protocol (EBGP) interdomain routing, path selection, and single and dual-homed networking
  • Implementing network redundancy using protocols including Hot Standby Routing Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP)
  • Implementing internet connectivity within Enterprise using static and dynamic Network Address Translation (NAT)
  • Describe the virtualization technology of servers, switches, and the various network devices and components
  • Implementing overlay technologies such as Virtual Routing and Forwarding (VRF), Generic Routing Encapsulation (GRE), VPN, and Location Identifier Separation Protocol (LISP)
  • Describe the components and concepts of wireless networking including Radio Frequency (RF) and antenna characteristics, and define the specific wireless standards
  • Describe the various wireless deployment models available, include autonomous Access Point (AP) deployments and cloud-based designs within the centralized Cisco Wireless LAN Controller (WLC) architecture
  • Describe wireless roaming and location services
  • Describe how APs communicate with WLCs to obtain software, configurations, and centralized management
  • Configure and verify Extensible Authentication Protocol (EAP), WebAuth, and Pre-Shared Key (PSK) wireless client authentication on a WLC
  • Troubleshoot wireless client connectivity issues using various available tools
  • Troubleshooting Enterprise networks using services such as Network Time Protocol (NTP), Simple Network Management Protocol (SNMP), Cisco Internetwork Operating System (Cisco IOS®) IP Service Level Agreements (SLAs), NetFlow, and Cisco IOS Embedded Event Manager
  • Explain the use of available network analysis and troubleshooting tools, which include show and debug commands, as well as best practices in troubleshooting
  • Configure secure administrative access for Cisco IOS devices using the Command-Line Interface (CLI) access, Role-Based Access Control (RBAC), Access Control List (ACL), and Secure Shell (SSH), and explore device hardening concepts to secure devices from less secure applications, such as Telnet and HTTP
  • Implement scalable administration using Authentication, Authorization, and Accounting (AAA) and the local database, while exploring the features and benefits
  • Describe the enterprise network security architecture, including the purpose and function of VPNs, content security, logging, endpoint security, personal firewalls, and other security features
  • Explain the purpose, function, features, and workflow of Cisco DNA Center™ Assurance for Intent-Based Networking, for network visibility, proactive monitoring, and application experience
  • Describe the components and features of the Cisco SD-Access solution, including the nodes, fabric control plane, and data plane, while illustrating the purpose and function of the Virtual Extensible LAN (VXLAN) gateways
  • Define the components and features of Cisco SD-WAN solutions, including the orchestration plane, management plane, control plane, and data plane
  • Describe the concepts, purpose, and features of multicast protocols, including Internet Group Management Protocol (IGMP) v2/v3, Protocol-Independent Multicast (PIM) dense mode/sparse mode, and rendezvous points
  • Describe the concepts and features of Quality of Service (QoS), and describe the need within the enterprise network
  • Explain basic Python components and conditionals with script writing and analysis
  • Describe network programmability protocols such as Network Configuration Protocol (NETCONF) and RESTCONF
  • Describe APIs in Cisco DNA Center and vManage

Prerequisites:

  • CCNA certification
  • Implementation of Enterprise LAN networks
  • Basic understanding of Enterprise routing and wireless connectivity
  • Basic understanding of Python scripting

 

Comments

Latest comments from students


User: don.seguin

Instructor comments: Tim was a great.

Facilities comments: The classroom was great.


User: jrtrussell

Instructor comments: Awesome

Facilities comments: Great


Liked the class?  Then let everyone know!