Course Overview:

The Implementing and Operating Cisco Enterprise Network Core Technologies (ENCOR) course gives you the knowledge and skills needed to configure, troubleshoot, and manage enterprise wired and wireless networks. You’ll also learn to implement security principles, implement automation and programmability within an enterprise network, and how to overlay network design by using SD-Access and SD-WAN solutions.

Attendees to N-415: Implementing and Operating Cisco Enterprise Network Core Technologies (ENCOR) will receive TechNow approved course materials, expert instruction, and prepare you to take the 350-401 Implementing Cisco® Enterprise Network Core Technologies (ENCOR) exam.

Document Flow Chart iconsm

Dates/Locations:

No Events

Duration: 5 Days

Course Objectives:

  • Illustrate the hierarchical network design model and architecture using the access, distribution, and core layers
  • Compare and contrast the various hardware and software switching mechanisms and operation, while defining the Ternary Content Addressable Memory (TCAM) and Content Addressable Memory (CAM), along with process switching, fast switching, and Cisco Express Forwarding concepts
  • Troubleshoot Layer 2 connectivity using VLANs and trunking
  • Implementation of redundant switched networks using Spanning Tree Protocol
  • Troubleshooting link aggregation using Etherchannel
  • Describe the features, metrics, and path selection concepts of Enhanced Interior Gateway Routing Protocol (EIGRP)
  • Implementation and optimization of Open Shortest Path First (OSPF)v2 and OSPFv3, including adjacencies, packet types, and areas, summarization, and route filtering for IPv4 and IPv6
  • Implementing External Border Gateway Protocol (EBGP) interdomain routing, path selection, and single and dual-homed networking
  • Implementing network redundancy using protocols including Hot Standby Routing Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP)
  • Implementing internet connectivity within Enterprise using static and dynamic Network Address Translation (NAT)
  • Describe the virtualization technology of servers, switches, and the various network devices and components
  • Implementing overlay technologies such as Virtual Routing and Forwarding (VRF), Generic Routing Encapsulation (GRE), VPN, and Location Identifier Separation Protocol (LISP)
  • Describe the components and concepts of wireless networking including Radio Frequency (RF) and antenna characteristics, and define the specific wireless standards
  • Describe the various wireless deployment models available, include autonomous Access Point (AP) deployments and cloud-based designs within the centralized Cisco Wireless LAN Controller (WLC) architecture
  • Describe wireless roaming and location services
  • Describe how APs communicate with WLCs to obtain software, configurations, and centralized management
  • Configure and verify Extensible Authentication Protocol (EAP), WebAuth, and Pre-Shared Key (PSK) wireless client authentication on a WLC
  • Troubleshoot wireless client connectivity issues using various available tools
  • Troubleshooting Enterprise networks using services such as Network Time Protocol (NTP), Simple Network Management Protocol (SNMP), Cisco Internetwork Operating System (Cisco IOS®) IP Service Level Agreements (SLAs), NetFlow, and Cisco IOS Embedded Event Manager
  • Explain the use of available network analysis and troubleshooting tools, which include show and debug commands, as well as best practices in troubleshooting
  • Configure secure administrative access for Cisco IOS devices using the Command-Line Interface (CLI) access, Role-Based Access Control (RBAC), Access Control List (ACL), and Secure Shell (SSH), and explore device hardening concepts to secure devices from less secure applications, such as Telnet and HTTP
  • Implement scalable administration using Authentication, Authorization, and Accounting (AAA) and the local database, while exploring the features and benefits
  • Describe the enterprise network security architecture, including the purpose and function of VPNs, content security, logging, endpoint security, personal firewalls, and other security features
  • Explain the purpose, function, features, and workflow of Cisco DNA Center™ Assurance for Intent-Based Networking, for network visibility, proactive monitoring, and application experience
  • Describe the components and features of the Cisco SD-Access solution, including the nodes, fabric control plane, and data plane, while illustrating the purpose and function of the Virtual Extensible LAN (VXLAN) gateways
  • Define the components and features of Cisco SD-WAN solutions, including the orchestration plane, management plane, control plane, and data plane
  • Describe the concepts, purpose, and features of multicast protocols, including Internet Group Management Protocol (IGMP) v2/v3, Protocol-Independent Multicast (PIM) dense mode/sparse mode, and rendezvous points
  • Describe the concepts and features of Quality of Service (QoS), and describe the need within the enterprise network
  • Explain basic Python components and conditionals with script writing and analysis
  • Describe network programmability protocols such as Network Configuration Protocol (NETCONF) and RESTCONF
  • Describe APIs in Cisco DNA Center and vManage

Prerequisites:

  • CCNA certification
  • Implementation of Enterprise LAN networks
  • Basic understanding of Enterprise routing and wireless connectivity
  • Basic understanding of Python scripting

 

Comments

Latest comments from students


User: don.seguin

Instructor comments: Tim was a great.

Facilities comments: The classroom was great.


User: jrtrussell

Instructor comments: Awesome

Facilities comments: Great


Liked the class?  Then let everyone know!

 

Course Overview:

TN-575: Open Source Network Security Monitoring teaches students how to deploy, build, and run an NSM operation using open source software and vendor-neutral tools. No network is bullet proof and when attackers access your network, this course will show you how to build a security net to detect, contain, and control the attacker. Sensitive data can be monitored and deep packet and deep attachment analysis can be achieved. As organizations stand up a Security Operations Center (SOC) the enterprise NSM is the key ingredient to that SOC. This course not only teaches how to implement an NSM technologically, but how to effectively monitor an enterprise operationally. You will learn how to architect an NSM solution: where to deploy your NSM platforms and how to size them, stand-alone or distributed, and integration into packet analysis, interpret evidence, and integrate threat intelligence from external sources to identify sophisticated attackers. A properly implemented NSM is integral to incident response and provides the responders timely information to react to the incident. TN-575: Open Source Network Security Monitoring is a lab intensive environment with a cyber range that gives each student in-depth knowledge and practical experience monitoring live systems to include: Cisco, Windows, Linux, IoT, and Firewalls.

Attendees to TN-575: Open Source Network Security Monitoring class will receive TechNow approved course materials and expert instruction.

This Course is taught utilizing Security Onion or RockNSM as specified by the customer.

Dates/Locations:

No Events

Duration: 5 Days

Course Objective:

The focus of this course is to present a suite of Open Source security products integrated into a highly functional and scalable Network Security Monitoring solution.

Prerequisites:

Students should have a basic understanding of networks, TCP/IP and standard protocols such as DNS, HTTP, etc. Some Linux knowledge/experience is recommended, but not required

Course Outline:

  • Network Security Monitoring (NSM) Methodology
  • High Bandwidth Packet Capture Challenges
  • Installation of Security Onion
    • Use Cases (analysis, lab, stand-alone, distributed)
    • Resource Requirements
  • Configuration
    • Setup Phase I – Network Configuration
    • Setup Phase 2 – Service Configuration
    • Evaluation Mode vs. Configuration Mode
    • Verifying Services
  • Security Onion Architecture
    • Configuration Files and Folders
    • Network Interfaces
    • Docker Environment
    • Security Onion Containers
  • Overview of Security Onion Analyst Tools
    • Kibana
    • CapME
    • CyberChef
    • Squert
    • Sguil
    • NetworkMiner
  • Quick Review of Wireshark and Packet Analysis
    • Display and Capture Filters
    • Analyze and Statistics Menu Options
    • Analysis for Signatures
  • Analyzing Alerts
    • Replaying Traffic
    • 3 Primary Interfaces:
      • Squert
      • Sguil
      • Kibana
    • Pivoting Between Interfaces
    • Pivoting to Full Packet Capture
  • Snort and Surricata
    • Rule Syntax and Construction
    • Implementing Custom Rules
    • Implementing Whitelists and Blacklists
  • Hunting
    • Using Kibana to Slice and Dice Logs
    • Hunting Workflow with Kibana
  • Bro
    • Introduction and Overview
      • Architecture, Commands
    • Understanding and Examining Bro Logs
      • Using AWK, sort, uniq, and bro-cut
    • Working with traces/PCAPs
    • Bro Scripts Overview
      • Loading and Using Scripts
    • Bro Frameworks Overview
      • Bro File Analysis Framework FAF
    • Using Bro scripts to carve out more than files
  • RockNSM ( * If Applicable)
    •  Kafka
      • Installation and Configuration
      • Kafka Messaging
      • Brokers
      • Integration with Bro and FSF
    • File Scanning Framework FSF
      • Custom YARA Signatures
      • JSON Trees
      • Sub-Object Recursion
      • Bro and Suricata Integration
  • Elastic Stack
    • Adding new data sources in Logstash
    • Enriching data with Logstash
    • Automating with Elastalert
    • Building new Kibana dashboards
  • Production Deployment
    • Advanced Setup
    • Master vs Sensor
    • Node Types – Master, Forward, Heavy, Storage
    • Command Line Setup with sosetup.conf
    • Architectural Recommendations
    • Sensor Placement
    • Hardening
    • Administration
    • Maintenance
  • Tuning
    • Using PulledPork to Disable Rules
    • BPF’s to Filter Traffic
    • Spinning up Additional Snort / Suricata / Bro Workers to Handle Higher Traffic Loads

Comments

Latest comments from students


 

Liked the class?  Then let everyone know!

Course Overview:

This concentration was developed in conjunction with the U.S. National Security Agency (NSA) providing an invaluable tool for any systems security engineering professional. CISSP®-ISSEP is the guide for incorporating security into projects, applications, business processes, and all information systems. Security professionals are hungry for workable methodologies and best practices that can be used to integrate security into all facets of business operations. The SSE model taught in the IATF portion of the course is a guiding light in the field of information security and the incorporation of security into all information systems.

Attendees to TN-812: Information Systems Secuirty Engineering Professional (ISSEP) will receive TechNow approved course materials and expert instruction.

Dates/Locations:

No Events

Duration: 5 Days

Course Objectives:

  • Systems Security Engineering
  • Certification and Accreditation
  • Technical Management
  • U.S. Government Information Assurance Governance

Prerequisites:

Comments

Latest comments from students


User: fsarisen

Instructor comments: Thank you Tim for all the great information! I am confident that I'll do well on the ICND exam.


User: storoy30

Instructor comments: The instructor, Tim Burkard, was very knowledgeable on the course material and skilled at explain more complex ideas.


Liked the class?  Then let everyone know?

Course Overview:

This course will cover topics to ensure that students have the technical knowledge and skills required to conceptualize, design, and engineer secure solutions across complex enterprise environments.  Students will be able to apply critical thinking and judgement across a broad spectrum of security disciplines to propose and implement solutions that map to enterprise drivers.  This course will prepare students for the objectives covered in the CompTIA CASP+ certification exam (CAS-004).

Attendees to CT-425: CompTIA Advanced Security Practitioner (CASP+) will receive TechNow approved course materials and expert instruction.

Date/Locations:

Date/Time Event
12/16/2024 - 12/20/2024
08:00 -16:00
CT-425: CASP+
TechNow, Inc, San Antonio TX
03/10/2025 - 03/14/2025
09:00 -17:00
CT-425: CompTIA Advanced Security Practitioner (CASP+)
TechNow, Inc, San Antonio TX
06/09/2025 - 06/13/2025
09:00 -17:00
CT-425: CompTIA Advanced Security Practitioner (CASP+)
TechNow, Inc, San Antonio TX
09/15/2025 - 09/19/2025
09:00 -17:00
CT-425: CompTIA Advanced Security Practitioner (CASP+)
TechNow, Inc, San Antonio TX
12/08/2025 - 12/12/2025
09:00 -17:00
CT-425: CompTIA Advanced Security Practitioner (CASP+)
TechNow, Inc, San Antonio TX

Duration: 5 days

Course Objectives:

  • Support IT governance in the enterprise with an emphasis on managing risk
  • Leverage collaboration tools and technology to support enterprise security
  • Use research and analysis to secure the enterprise
  • Integrate advanced authentication and authorization techniques
  • Implement cryptographic techniques
  • Implement security controls for hosts
  • Implement security controls for mobile devices
  • Implement network security
  • Implement security in the systems and software development lifecycle
  • Integrate hosts, storage, networks, applications, virtual environments, and cloud technologies in a secure enterprise architecture
  • Conduct security assessments
  • Respond to and recover from security incidents

Prerequisites:

Completion of the following or equivalent knowledge:

CompTIA Certification: A+ Essentials

CompTIA Certification: Security+

Comments

Latest comments from students


User: clbrack

Instructor comments: I expect to pass, another great class from technow!


User: christopher0470

Instructor comments: Alan takes the time to cover the material so that you understand the concepts and applications of the information presented.

Facilities comments: I like the location. It was quiet and very conducive to learning.


Liked the class?  Then let everyone know!

Course Overview:

An in-depth course on how to use and configure Cisco Firepower Threat Defense technology,  from device setup and configuration and including routing, high availability, Firepower Threat Defense migration, traffic control, and Network Address Translation (NAT).  Students implement advanced Next Generation Firewall (NGFW) and Next Generation Intrusion Prevention System (NGIPS) features, including network intelligence, file type detection, network based malware detection, and deep packet inspection.
Students will also learn how to configure site to site VPN, remote access VPN, and SSL decryption before moving on to detailed analysis, system administration, and troubleshooting.  This course combines lecture materials and hands on labs throughout to make sure that students are able to successfully deploy and manage the Cisco Firepower system.

It is a five-day instructor-led course that is aimed at providing network security engineers with the knowledge and skills that are needed to implement and maintain perimeter solutions that are based on Cisco Firepower security appliances. At the end of the course, students will be able to reduce risk to their IT infrastructure and applications using Cisco Firepower security appliance features, and provide detailed operations support for the Firepower appliance.

Attendees to N-485: In-Depth Securing Networks with Cisco Firepower Threat Defense NGFW will receive TechNow approved course materials and expert instruction.

Date/Locations:

No Events

Duration: 5 days

Course Objectives:

  • Understand Sourcefire, Firepower 6.2, FireAMP, and Firepower Threat Defense (FTD)
  • Configure the Firepower Management Center (FMC)
  • Raise you confidence managing the Firepower Manager and Firepower tThreat Defense (FTD)
  • Describe the Cisco Firepower Systems infrastructure
  • Navigate the user interface and administrative features of the Cisco Firepower 6.2 system, including advanced analysis and reporting functionality to properly assess threats
  • Describe the System Configuration and Health policies and implement them
  • Describe the role Network Discovery (Firepower) technology plays in the Cisco devices
  • Describe, create, and implement objects for use in Access Control policies
  • Create DNS and URL policies and configure Sinkholes
  • Configure FTD policies such as Platform, Routing, Interface, Zones, PreFilter, QoS, NAT and Flex Config!
  • Describe advanced policy configuration and Firepower system configuration options
  • Configure Malware Policies to find and stop Malware
  • Understand Security Intelligence, and how to configure SI to stop attacks NOW!
  • Configure policies to find and stop Ransomware
  • Understand how to fine tune IPS policies
  • Understand how to find tun Snort Preprocessor policies (NAP)
  • Configure Correlation events, white rules, traffic profiles and create respective events and remediate them
  • Analyze events
  • Create reporting templates and schedule them
  • Configure backups, rule updates, Firepower Recommendations, URL updates, and more to run every week automatically
  • Set up external authentication for users using LDAP/Realms
  • Configuring system integration, realms, and identity sources
  • Configure FMC domains and implement them
  • Configure FTD HA with two FTD devices
  • SSL Policy – decrypt your traffic
  • AnyConnect and Site-to-Site VPN
  • Understand network and host based AMP.  Configure and analyze host based AMP
  • Understand Cisco Identity Services Engine (ISE)
  • Configure ISE and integrate with Cisco FMC identity policy using PxGrid

Prerequisites:

Comments

Latest comments from students


Liked the class?  Then let everyone know!